Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem

Hartford, Connecticut, United States



┴┬┴├┬ ┌─┼─ │◎ │ │ ○└┬┘●
─┼─││ │ │ ││─┴─┴ ──┼──
●│○││ ┴─┼─ │○ ● / │ \
' * .* 🎅.🎅 '* * *
* . ' 🎄:...:🎄 ' * . *
. * ⭐-⭐-⭐ * ' . *
* ' 🎄:...:🎄:...:🎄 ' * . .
' ' ⭐-⭐...⭐-⭐ * '
* * 🎄:..:🎅..🎅:..:🎄 ' *
* . .⭐.⭐⭐⭐⭐.⭐ * ' * .
. 🎄:.:+🎅+.+🎅+:.:🎄 . * *
* . ⭐⭐.⭐.⭐.⭐.⭐⭐ * '
' . 🎄:.:+🎅+:.:+🎅+:.:🎅🎄 *
. * ⭐.⭐⭐⭐⭐⭐⭐⭐.⭐ ' *
.🎄:.:+🎅+.🎄.🎅.🎄.+🎅+:.:🎄
................𝓜𝓮𝓻𝓻𝔂 𝓒𝓱𝓻𝓲𝓼𝓽𝓶𝓪𝓼.................
🥵🥵🥵🥵
(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cs……chx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)